Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells.
نویسندگان
چکیده
Semiconductor quantum well (QW) light-emitting diodes (LEDs) have limited temporal modulation bandwidth of a few hundred MHz due to the long carrier recombination lifetime. Material doping and structure engineering typically leads to incremental change in the carrier recombination rate, whereas the plasmonic-based Purcell effect enables dramatic improvement for modulation frequency beyond the GHz limit. By stacking Ag-Si multilayers, the resulting hyperbolic metamaterials (HMMs) have shown tunability in the plasmonic density of states for enhancing light emission at various wavelengths. Here, nanopatterned Ag-Si multilayer HMMs are utilized for enhancing spontaneous carrier recombination rates in InGaN/GaN QWs. An enhancement of close to 160-fold is achieved in the spontaneous recombination rate across a broadband of working wavelengths accompanied by over tenfold enhancement in the QW peak emission intensity, thanks to the outcoupling of dominating HMM modes. The integration of nanopatterned HMMs with InGaN QWs will lead to ultrafast and bright QW LEDs with a 3 dB modulation bandwidth beyond 100 GHz for applications in high-speed optoelectronic devices, optical wireless communications, and light-fidelity networks.
منابع مشابه
Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells
Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of t...
متن کاملSurface plasmon enhanced super bright InGaN light emitter
We use surface plasmons to increase the light emission efficiency from InGaN/GaN quantum wells by covering these with thin metallic films. Large luminescence enhancements were measured when silver or aluminum layers are deposited 10 nm above an InGaN light emitting layer, whereas no such enhancements are obtained from gold coated samples. The internal quantum efficiencies of quantum wells befor...
متن کاملApproaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells.
Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative recombination rate is studied. Studies show t...
متن کاملBlue–green–red LEDs based on InGaN quantum dots grown by plasma-assisted molecular beam epitaxy
Self-assembled InGaN quantum dots were grown in the Stranski–Krastanov mode by plasma-assisted molecular beam epitaxy. The average dot height, diameter and density are 3 nm, 30 nm and 7 × 1010 cm–2, respectively. The dot density was found to decrease as the growth temperature increases. The cathodoluminescence emission peak of the InGaN/GaN multiple layer quantum dots (MQDs) was found to red sh...
متن کاملExcitonic field screening and bleaching in InGaN/GaN multiple quantum wells
Photoinduced carrier dynamics in a sequence of InGaN/GaN multiple quantum wells (MQWs) are studied by employing steady state and ultrafast spectroscopy at room temperature. Time-resolved photoluminescence (PL) measured short carrier lifetimes of ,140 ps at room temperature. Steady state differential transmission was used to measure the in-well field screening due to the photoinjected carriers. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره شماره
صفحات -
تاریخ انتشار 2018